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A method is presented in this article for deriving higher-order correction terms 
to the well-known asymptotic results for laminar forced-convection heat and 
mass transfer, and a formula is obtained for computing under fairly general 
conditions the first correction term to the asymptotic Nusselt number at  large 
PBclet numbers for flows with small or moderate Reynolds numbers. This result 
is then applied to the problem of heat transfer from a solid, isothermal sphere in 
Stokes flow, to yield the asymptotic expression for the average Nusselt number, 

Nu = (Pe)* [0.6245 + 0.461(Pe)-) +@Re) + o(Pe-j)] 

for P e  -+ co, Re -+ 0, where Nu and P e  are based on the radius of the sphere. 

1. Introduction 
Some of the most useful mathematical results for laminar forced and natural 

convection heat or mass transfer are based on asymptotic solutions of the 
governing transport equations. Familiar examples include the laminar forced- 
convection heat-transfer relations for the Nusselt number in terms of the Prandtl 
and Reynolds numbers, such as 

Nucc (PrRe)) 

for low Reynolds number laminar flows (Acrivos & Taylor 1962), and 

Nucc (Pr)* (Re)* or Nucc (PrRe)*, 

depending on whether Pr  1 or P r  < 1, for high-speed flows of the laminar 
boundary-layer type (Morgan & Warner 1956; Morgan, Pipkin & Warner 1958). 

It has already been pointed out in several of the papers on this subject 
(Lighthill 1950; Meksyn 1961; Mercer 1959,1960; Merk 1969; Morgan & Warner 
1956; Morgan et al. 1958) that such relations represent, as a rule, asymptotic 
results which become exact only for very large or for very small values of certain 
of the parameters involved. Nevertheless, these asymptotic solutions are 
exceedingly useful from a practical point of view owing to the fact that in many 
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cases they have been found to hold with surprising accuracy even under distinctly 
non-asymptotic conditions. It would appear desirable therefore to develop a 
general technique for constructing corrections to these asymptotic solutions in 
order to be able to estimate theoretically their range of validity for general flow 
fields, surface geometries and boundary conditions. 

Now, it is plausible to suppose that when relations such as those given above 
are truly of an asymptotic type representing, say, the first term in an asymptotic 
series, it  sould be possible to generate ‘correction terms’ by means of a straight- 
forward perturbation scheme. Indeed, this has already been carried out for 
certain special cases (Meksyn 1961; Mercer 1959, 1960; Merk 1959; Morgan ,& 
Warner 1956; Morgan et al. 1958). In  this paper we shall extend this approach to 
laminar forced convection at high PBclet numbers, but with small or moderate 
Reynolds numbers, and shall derive a general formula for computing the first- 
order correction term to the asymptotic form of the Nusselt number for 
P e  = (Re Pr) + co which will then be applied to the problem of heat transfer 
from an isothermal sphere in Stokes flow. Some expansions for heat transfer to 
laminar boundary-layer flows with large or with small Prandtl numbers will be 
treated in a subsequent paper. 

2. Basic equations and the boundary-value problem 

property incompressible flows. In  dimensionless form this becomes 
We begin with the well-known steady-state energy equation for constant 

det 

M ( @ )  = U.grad0-(1/Pe)V20 = H ,  (2.1) 

where 0 denotes a dimensionless temperature relative to that of the free stream, 
while P e  = U, LIK 

is a (dimensionless) PBclet number, U, being a characteristic velocity, L a 
characteristic length for the system and K the thermal diffusivity of the fluid. 
Also, U is the velocity vector and H a heat-generation term, both of which are 
assumed known everywhere throughout the flow field. The analysis will be 
restricted to two-dimensional velocity and temperature fields, but will include 
axisymmetric as well as planar flows past a solid bounding surface 9. 

We shall assume further that the surface 9 is sufficiently smooth, except 
perhaps at a finite number of isolated points, so that we may employ the usual 
‘ boundary-layer ’ co-ordinates as independent variables in a region near the 
surface 9. Thus, letting 

x = XJL, y = x2/L, 
where x2 is the perpendicular distance of a point from the surface and x1 is a 
distance measured along the surface in a plane of flow, we can write equation 
(2.1), at least near the surface 9, as 

P(@) = Q, (2.3) 
where P denotes the linear differential operator 

a a 1 a y a  P = ayM = yu-+ayv--- 
ax ay P e  [a, (a a,) + & ( 4 1  - 
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In this expression, u = ul/U, and v = u2/Um, u1 and u2 being the velocity com- 
ponents in the xl,  x2 direction, respectively, and 

I a = 1 +a,(x) y, 

where a and y are the metrical coefficients for the co-ordinate system (Meksyn 
1961). We recall that al (x) lL  is the curvature of the surface in the plane of flow 
for both the planar and the axisymmetric cases. Also, for planar flow yo = 1, 
y1 = 0, whereas, for axisymmetric flow, Ly, and y1 are, respectively, the radius 
of rotation of the surface 9 and the cosine of the angle between the tangent to the 
surface and the axis of symmetry. Thus, for axisymmetric flow, we may set 

and a1 = Y;/Y; = --Y:/% (2 .5)  

where the primes denote differentiation with respect to x and where the sign in 
the expression for y1 is to be taken positive or negative according to whether 
cos-l y1 is 2 +n. 

We shall consider here the boundary-value problemin which the temperature 
is prescribed on the surface 9, i.e. 

lim 0 = 0,(x), 
u - 4  

where O,(x) is given a priori. For problems of the exterior type, where the 
surface Y bounds the flow field internally, an additional condition of regularity 
far from the surface will be necessary, and we shall suppose here that this can 
be stated as 

lim 0 = 0, 
Y--tm 

i t  being assumed that H behaves in such a way that a solution exists which is 
regular at y = co. 

As is generally recognized, it is not feasible to derive exact solutions to the 
above convection problem for the most general flow field and for any given bound- 
ing surface 9. One is forced therefore to resort to approximate or, at  best, to 
asymptotic solutions such as the thermal boundary-layer solution to be con- 
sidered here, which may be regarded as the limiting form of the temperature 
field 0 for large values of the P6clet number. 

One recalls at this point that, for Pe -+ 00, temperature variations are in 
general confined to a small region near the surface 9, in which case the rate of 
convection is determined primarily by the limiting form near y = 0 of the 
functional coefficients a, y ,  u, v appearing in the differential operator P of (2.3). 
Now, for a given surface geometry, the functions a, y are completely specified, 
whereas the character of the velocity components u, v is governed by the surface 
geometry and by a Reynolds number 

(2.7) 

Re = U, Llv, (2.8) 
18-2 
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v being the kinematic viscosity of the fluid. Therefore, since 

Andreas Acrivos and J .  D. Goddurd 

Pe = Re Pr, 

where Pr = V / K  (2-9) 
is the Prandtl number of the fluid, we can state formally that the limit Pe -+ co 
includes the special cases: 

(2.10) 1 (1) Re fixed with Pr -+ co; 
(2) Re + co with Pr fixed. 

The first of these corresponds to fairly general laminar flows including those with 
very small Reynolds numbers, whereas the requirement of large Re in the second 
case implies that the flow is of the laminar boundary-layer type. 

It will be shown in the present paper how, for case (l), a higher-order correction 
to the thermal boundary-layer solution can be derived, while any discussion of 
the interesting subcases of case (3) ,  Pr -+ 0 and Pr -+ co, which can also be 
treated by the same type of analysis as that to be presented below, will be 
deferred to a later article. 

3. The thermal boundary-layer expansion for small or moderate 
Reynolds numbers 

Here we shall outline briefly the type of boundary-layer expansion to be 
considered, establishing at  the same time the notation to be employed. 

First of all, since we are dealing with incompressible flow, we can set 

where $ is the stream function, in which case the differential operator P of (2.3) 

Now, as has already been remarked, the asymptotic expression for P as 
Pe -+ co depends, primarily, on the limiting form of its coefficients as y --f 0. 
Thus, if the analytic behaviour of the functions a and y is restricted by adopting 
the usual assumptions of boundary-layer analysis that the surface 9' is 'smooth ', 
i.e. that it  has a finite curvature (la,(x)l < co), and that in the axisymmetric case 
its radius of revolution is not zero (yo(x)  > 0 ) ,  we may expand both the coefficients 
ay and y/a, occurring in P, about y = 0, so that 

(3.3) 

in which the zeroth-order coefficient does not vanish and where the higher-order 
coefficients are bounded; moreover, for a solid surface, the stream function will 
have in general the expansion 

I "Y = Y0+~",Y0+~1~~+Y1~1Y2~ 

Y b  = Yo + (71 -Yo all Y + @?Yo- a1y1) Y2 + ... 9 

$ = + 2 ( 4  y2 + +3(4 Y3 + - * .  , (3-4) 

where (3.5) 
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Thus, as long as @z(x) ,  which is proportional to the shear stress at  the surface, 
does not vanish, the stream function @ has a zero of order two in y at y = 0. The 
appropriate stretched co-ordinate for the boundary-layer analysis is then, in 
this case (Morgan & Warner 1956; Levich 1962) 

in terms of which (3.3) and (3.4) become 
Yz = (Pe)+y, 

“Y = Yo + (a1 Yo + Yl)  (Pe)-fyz + O(Pe-9, 

Yi“ = Yo + (71 - Yo “1) (Pel-5 Yz + O(Pe-9, 
$ = Pe-P[$z y: + $@-+ yg + O(Pe-#)]. 

P = (Pe)-f[P,+(Pe)-)P,+O(Pe-.~)],  

As a result, the operator P of (3.2) can be expanded formally as 

where 

etc., are linear differential operators containing no explicit dependence on Pe. 
We shall consider henceforth only the homogeneous form of (2.3), with Q = 0, 

since the analysis which follows could easily be extended to the non-homogeneous 
equation if the analytic form of Q were specified. (In this way, for example, one 
could account for viscous energy dissipation in the flow.) The solution to the 
homogeneous equation can then be constructed formally by letting 

O = Oo(x,  yz) + (Pel-* Ol(x, yz) + O(Pe-%), (3.8) 

where the Oi are functions only of x and yz for i = 0, 1,2,  .... In  particular, in 
view of (3.7) and (3.8), 

PO = (Pe)-+ [Po Oo+ (Po O, + Pl 0,) (Pe)-+ + O(Pe-%)] = 0, 

which, on equating to zero the coefficients of like powers of Pe, reduces to the 
sequence of differential equations 

(3.9) I Po@, = 0, 

Po@, = -PIOo, 
.................. 

Similarly, the boundary conditions of (2.6) and (2.7) become 

{:(x), for i = 0 
lim Oi = 

2/2+0 for i = 1,2, ..., (3.10) 

lim Oi = 0, for i = 0,1,2.  J 
112-00 

The first equation of (3.9) represents, of course, the ‘boundary-layer ’ approxi- 
mation to the energy equation which has found frequent applications. We now 
wish to improve on this approximation by deriving an expression for the f i s t  
correction with the aid of the appropriate Green’s function for the differential 
operator Po. This can be done in principle since the preceding system of equations 
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constitutes a typical perturbation scheme which is formally soluble in a sequential 
fashion if an appropriate initial condition is imposed on the Oi. Such a condition 
is of course necessary for uniqueness since we have replaced the elliptic partial 
differential equation (2.3) by a sequence of parabolic equations. 

This initial condition must, however, be specified with some care. To begin 
with, it  appears reasonable that, for i = 0 , 1 , 2 ,  . . . , Oi -+ 0 for x -+ 0 + along any 
streamline $ > 0, in which case, if we consider only the first term of (3.6) for 4, 
we should require that 

lim Oi = 0, for all $2(x) y; > 0, (i = 0 , 1 , 2 ,  . . .), (3.11) 

the point x = 0 corresponding to the leading edge or forward stagnation point of 
the surface. This is equivalent to neglecting any initial thermal boundary-layer 
profile, an assumption which is permissible certainly to O(Pe-4) as long as O,(x) is 
both analytic and such that lim O,(x) = 0. In contrast, if lim O,(x) $. 0 then 

the conduction of heat upstream from the leading edge cannot be overlooked and 
any correct analysis of the problem must take into account, in general, the 
presence of this singularity at x = 0. In  particular, if one supposes that as x -+ 0, 
1cr2(x) - axm with 0 < m < 1, then one can show that (3.8) can only hold as long 
as x > O(1/Pe1'(m+2)), while within the singular region 1x1 < O(1/Pe1i(m+2)), 

x - t o  

x-*o 2-0 

(3.1 1 a )  

with Y = Pe1'(m+2)y, X = Pe11(m+2)x, together with the surface boundary con- 
ditions, 

at  Y = 0, 0 = O,(O) for X > 0 and aO/aY = 0 for S < 0. 

It can be easily demonstrated, furthermore, that under these conditions the 
contribution of the singular region to the surface integral of the local heat flux 
(aO/ay),,o becomes O( l) ,  which is clearly of the same order of magnitude as that 
of the second term of (3.8). 

Thus, it should be firmly kept in mind that the formal expansion to be developed 
below cannot be applied to problems in which the heating section is allowed to 
extend all the way up to the leading edge. The only exception to this restriction 
appears to be the case of symmetric stagnation flows with symmetric surface 
temperature distributions where, as will be remarked on later, the exact initial 
condition (aO/ax) = 0 as x + 0 is satisfied by at least the first two terms of (3.8) 
even if O,(O) $. 0. 

Actually, in the discussion which follows, we shall consider a slightly more 
general expansion problem than that outlined above by allowing the stream 
function $ to have a zero of arbitrary positive order n > 0 a t  y = 0, such that 

@ N $n(x) Y" for Y -+ 0, (3.12) 

in which case the appropriate stretched co-ordinate for the boundary-layer 
analysis becomes (Acrivos 1960) 

y n = (Pe)Mfi+l) Y, (3.13) 
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while the resulting asymptotic series for 0 assumes the form 

0 = O(x,  y,) + (Pe)-l~(n+l)O,(x, y,) + 0(Pe-21("+1)) (3.14) 

involving now a formal set of equations 

0 for i = 0 
Po@ = 

{Qi(x,y,) for i = 1 , 2 ,  ..., 
for i = 0 

lim Oi = [:("' 
2/7C--f0 for i = 1,2,  ..., 
lim 0, = 0 for i = O , 1 , 2  ,..., 

YK+W 

I 
( (3.15) 

limOi = 0 
x+o 1 for i = 0, 1 , 2 ,  ..., $,(x) y: > 0. 

Here, the Qi are determined once O,, O,, Oi-, are given for i = 1 , 2 ,  ..., and Po is 
the differential operator 

a a az 
Po = n$(x)  yn--l&- ?Y(x)Yn- -Yo@' 

aY 
(3.16) 

where, for convenience, we have dropped the subscript n on yn and $n(x). This 
generalization to arbitrary n could have practical applications to heat-transfer 
problems involving transfer at  the interface between two fluids (1, 4 0, n = 1) 
or from surfaces where the shear stress vanishes (n = 3). 

In  closing this section it is important to point out that one should not expect 
the regular perturbation scheme outlined above to remain valid under all circum- 
stances since one can find examples, such as those to be mentioned below, where 
this procedure clearly cannot be applied. Thus, it  is evident that the method 
given by (3.7) and (3.5) would fail if $z(z)/$3(z) were to vanish at one or more 
isolated points along the surface while remaining non-zero everywhere else. 
Similarly, the scheme would cease to apply in regions where the thickness of the 
thermal layer remains of the same order of magnitude as the characteristic 
dimension of the body. And finally, this approach cannot remain valid if the 
surface temperature distribution O,(x) has a finite discontinuity at  a t  least one 
point x = (, since one can easily show that the temperature gradients will be of 
the same order of magnitude near ( both in the longitudinal and in the normal 
directions. Consequently, in order to take proper account of the discontinuity 
at x = one would have to include in the analysis a treatment of an equation 
similar to (3.11a),  usually with m = 0, for the region near x = 5. 

4. Construction of a formal solution to the expansion problem 
4.1. Transformation of co-ordinates and introduction of the Green's function 

By generalizing the transformation used by Herbeck (1954) for planar flows in a 
related problem, we now change to new independent variables 

I z = [n$(x)]lIn y, 
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where we suppose that n > 0, yo > 0, and + > 0 for x > 0, and that the defining 
integral for t exists. For external flows, the point x = 0 ( t  = 0)  refers to the leading 
edge or forward stagnation point of the surface under consideration. 

In  terms of these new variables, the operator Po of (3.16) becomes 

Po = J-yzn-lapt- (ayaz2)],  (4.2) 

(4.3) 

where J denotes the Jacobian of the transformation 

J = a@, y)P(t, 2) = l/Y,(X) [qWl2'". 
This operator in many of its equivalent forms has already been the subject of 

a number of mathematical and physical papers. The more mathematical of these, 
Myller-Lebedeff (1907), Hille (1926) and Hardy (1932), proceed from various 
forms of Po and derive fundamental solutions to the corresponding homogeneous 
differential equation, some of which have already been applied to physical 
problems by Sutton (1943) and by Lauwerier (1959) for the case n = 2.t  For 
n = 1 the operator Po reduces to that associated with unsteady unidimensional 
heat conduction or diffusion. 

Although some of the fundamental solutions given by Sutton correspond to  
solutions previously reported, the various theorems and results cited in his 
paper are most directly applicable to the problem treated here (after a simple co- 
ordinate transformation). Consequently, we shall employ these results in a formal 
way referring the interested reader to his paper for some of the proofs involved. 

We begin by expressing formally the solution to the boundary-value problem 

Po@ = q( t ,z)  for t > 0 , z  > 0, (4.4) 

by 

where 

lim 0 =f(z)  for z > 0, 

lim 0 = h(t) for t > 0, 

0 = E( t ,  2) + ~ ( t ,  z )  + A(t, z), 

3 = lom z*%-lG0(t, z ;  0, z* ) f ( z* )  dz*, 

t-0 

-0 

(4.5) 

x = J; [g ( t ,  2; t*, 2") 1 z*=o 
h(t*) dt*, 

A = / t / m G o ( t ,  z ;  t*, z*) J(t*)  q(t*, z*)  dz* dt*, 

J denoting the Jacobian of (4.2) and Go(t,z;t*,z*) the Green's function, the 
latter satisfying (Friedman 1956) 

0 0  

Po Go = J-l S ( t  - t*) S(Z - z*), 
lim Go = 0, 

lim Go = 0, 

where S is the Dirac delta function. 

t-t* 

2'0 

t Lighthill (1950), in his treatment of heat transfer to laminar boundary layers with 
large Prandtl number, and LeFur (1960) have made use of the Laplace transformation to 
treat boundary-value problems associated with the above operator. 



Asymptotic expansions for heat and mass transfer. Part I 281 

Now, the appropriate form for Go is found from Sutton’s results to be 

where 

Idntl denotes the modified Bessel function of the first kind of order 1/n + 1. 
The functions Z and x in (4.7) satisfy the homogeneous form of (4.4) and A the 

non-homogeneous form, with x and A satisfying the homogeneous form of the 
initial condition (4.5) and ti the non-homogeneous form; finally, ti and A satisfy 
the homogeneous form of the boundary condition (4.6) and x the non-homo- 
geneous form. 

4.2. Application to the general expansion problem 

The boundary-value problem of (3.15) is seen to be a special case of (4.4)-(4.6). 
In  particular, since we shall restrict ourselves to problems for which f(z) 3 0 in 
(4.5), and therefore 9 = 0, we need only consider integrals of the type x and A 
in (4.7). 

The first perturbation function 0, of (4.41, i.e. the boundary-layer solution, is 
given immediately by the second integral of (4.7) : 

with 
(4.10) 

However, since we are dealing with linear equations, it  suffices to consider the 
simpler problem in which 

h(t) = @,(S) = H ( x  - x*) = H(t  - t*), (4.11) 

where H(s )  is the Heaviside step-function, being zero or unity according to 
whether s < 0 or s > 0. The solution to the problem involving a more general 
variation of 0, can then be derived in general by superposition from results thus 
obtained. 

Assuming then that h(t) is indeed given by (4.11), we can reduce the integral 
x for 0, to 

(4.12) 

where c is the variable defined in (4.9), and r ( v , s )  is the complement of the 
tabulated, incomplete gamma function: 

This solution appears in Sutton’s paper and has also been obtained by Acrivos 
(1960) by a ‘similarity’ transformation. 
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A formal solution for the second perturbation, or first correction term, O,, in 
(4.14) can now be expressed in terms of the third integral of (4.7) as 

with 
(4.13) 

Before going any further, however, it  is necessary to specify the functional 
form of QI(z,y) in (3.15). Of particular interest here is the perturbation scheme 
of (3.8)-(3.10) with n = 2, for which one finds, using (4.1), that 

q(t, 2) = -PI 0, 

from which it follows that 
39 e-C2 

J ( t )  4(t, X )  = - ~- [A(O)(7, t * )  + A(3)(7, t*)  (3<)2],  r(+) (37)) 
(4.14) 

by substituting the function 0, as given by (4.12). Here < = 23/37* and 7 are the 
variables defined in (4.9) for n = 2,  whereas J ( t )  is the Jacobian of (4.2), and 

t*) = {1/(2$2)'} +Yl/YO)7 

where primes denote differentiation with respect to x. As indicated above, A(,) 
and A@) are functions both of 7 = t - t* and t* (or, equivalently, functions of t 
and t * ) ,  since x = z(t) = x(7+t*), by (4.1). The factor J has been included here 
since Jq occurs in the integrand of A in (4.7) as a result of our 'normalization' 
of the Green's function. 

Substituting then the expression (4.14) for Jq into that integrand we obtain, 
for the first correction term in (3.8), 

(4.16) 

with 5' = g ( Z ' , 7 ' ) ,  7' = t'-t*, 

[ ( z ,  t )  being defined in (4.9). 
We have chosen to express the integrals arising here for n = 2 in terms of the 

more general integral S$?), since it has been found that integrals of this type arise 
frequently in the treatment of related expansion problems. Moreover, as shown 
in Appendix 1, the preceding double integral can be reduced to a single integral 
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involving the confluent hypergeometric function, which for the case at  hand, 
n = 2,  becomes 

(4.17) 

Thus, equations (4.16) and (4.17) provide a closed-form expression for the first 
correction term to the asymptotic temperature profile for Pe -+ co. 

In  practice, the integrals in (4.17) would have to be evaluated numerically due 
to the general complexity of the functions A@) of (4.14). Usually, however, one is 
mostly interested in the resulting correction term to the heat-transfer rate, which 
is proportional to the surface-normal derivative of GI1. This derivative is given 
by (4.16) as 

(4.18) 

which can be further simplified because, as shown also in Appendix 1, 

Equations (4.18) and (4.19) embody the principal result of this paper, pro- 
viding a closed-form expression for the first correction term to the asymptotic 
heat-transfer rate for Pe -+ 00. Again, it should be emphasized that this result 
is meaningful only if used in conjunction with a surface-temperature distribution 
GI&) that is continuous everywhere with, in general, O,(O) = 0. This is so 
because our regular perturbation analysis has excluded any treatment of 
equations such as ( 3 . 1 1 ~ )  which, as mentioned before, apply within a small 
region near the point of surface-temperature discontinuity. We turn now to a 
specific application of the above result. 

5. Asymptotic expansion of the Nusselt number for Pe 3- 1, for an 
isothermal sphere in Stokes flow 

The results derived above will now be applied to a problem of some historical 
interest (Acrivos & Taylor 1962) involving heat transfer from a solid sphere in 
steady Stokes flow. That is, we consider the case where 

Re = U,L/v< 1, 

but with Pr sufficiently large that 

Pe = U,L/K = RePr 9 1, 

where L denotes now the radius of the sphere and U, the free-stream velocity of 
the fluid relative to the sphere. 
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The stream function for the sphere is given to a first approximation in Re by 
the well-known expression of Stokes (Lamb 1945) 

(5.1) 2 2r 2r3 7 @=-(I.--+- 1 r2sin2q5+O(Re) ( O <  q 5 < n - ) ,  

for Re -+ 0,  where LU, $ is the stream function, Lr is the radial distance from the 
centre of the sphere, and q5 is the angle measured from the upstream stagnation 
streamline. The flow is symmetric about the axis of the sphere lying in the 
direction of the free-stream flow. 

In  this case, the co-ordinates r,  q5 are related to the boundary-layer co-ordinates 
x, Y of 9 2 by 

r = l + y ,  
q5 = x  (O<x<r) ,  

a = r =  l + y ;  a, = a, = I, 

y = rs in4 = (l+y)sinx; yo = y, = sinx,J 

so that, using (5.1), we have for the expansion (3.4) for @ 

with 

@ = $(3y2-y3+y4+ ...) sinzx, 

$2(x) = - 37,h3(x) = 2 sin2x. 

Consequently, the variables t and x of (4.1) become, for n = 2, 

2 = (2@2)2Y2 = (&sinx)y,, 

with 0 < t < t, for 0 < x < n-, where t ,  = &r 44. (It will 
Jacobian of (4.3) is given by = 

(5.3) 

be noted that the 

indicating that the transformation is singular at  x = 0 and at x = n.) 

on the (dimensionless) temperature field are 
Now, for the case of uniform surface temperature, the boundary conditions 

Then, if the local Nusselt number (based on the radius of the sphere) is defined by 

ao ao 
Nub)  = - (& = - (&) 2/=0 7 

we obtain from equation (3.8) the asymptotic expansion 
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the last equality following from (5.4). We can now employ the general results 
derived above to give the first two terms in (5.7). 

For a uniform surface temperature x* = t* = 0 in (4.11). Equation (4.12) gives 
then the asymptotic temperature profile as 

so that 

where t ( x )  is to be obtained from (5.4). Equation (5.8) is identical with the well- 
known result for the asymptotic Nusselt number for Pe + co (cf. Acrivos & 
Taylor 1962). 

In  order to derive now the correction of O(Pe-)) relative to the first term, we 
employ (4.18) and (4.19). For the problem at hand, the functions A(o), of 
(4.15) reduce, by (5.2) and (5.3), to 

A@) = A‘O’(t) = 2/(2$T2)4 

where yo and $2 are given respectively by (5.2) and (5.3). As indicated, the 
functions in (5.9) depend now on t alone, since t* = 0. 

It is of some interest to note at this point that, by (5.2) to (5.4), one can readily 
show that t and x ,  as well as both the functions in (5.9) are all odd functions of x. 
Hence, it follows, by (4.17) and (5.8), that a@,/ax = 0 at x = 0 for i = 0,1,  which 
agrees of course with the exact ‘initial’ condition for the problem at hand. In  
turn this result establishes the validity in this case of the first two terms of (3.8) 
at x = 0, in spite of the singularity of the co-ordinate transformation. 

By employing (4.18) and (4.19), we can derive immediately the desired 
correction term in (5.7), which becomes 

Unfortunately it appears difficult to obtain an analytic expression for this 
correction term due to the complexity of the functions A(O) and A(3). However, 
one can deduce certain of its properties. In  particular, it is shown in Appendix 2 
that this expression has a logarithmic singularity at the rear stagnation point of 
the sphere x = 7r (t = t,). It follows then that the expansion of (5.7) cannot be 
valid in the neighbourhood of this point since the first term, which is O( 1) there, 
becomes much smaller than the ‘correction’ term as t -+ t,. This affords a good 
example of the non-uniform character of such expansions due, in this case, to the 
omission of conduction terms which govern the ‘thickening’ of the thermal 
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boundary layer into a 'thermal wake'. Nevertheless, it  is possible to obtain a 
simple result for the average Nusselt number for the entire surface of the sphere: 

1: ~ u ( x )  sin x dx 

J: sin x dx 
NU = = f j: ~ u ( x )  sin x ax, (5.11) 

where Nu(x)is the local Nusselt number of (5.6), since, as discussedin Appendix 2, 
the contribution from the singular region described above does not affect the 
correction term of O(Pe-4) in the expansion of &/Pe). The latter can be expressed 

N / P e f  = C0+ C,(Pe)-+ + o(Pe-*>, (5.12) 
as 

where the C, are numerical constants given by (5.7) and (5.11): 

t being the variable defined in (5.4). 
By equation (5.8), the first constant in (5.12) is found to be (cf. Acrivos & 

= 0.6245 ..., 
whereas from equation (5.10) 

c, = ~[r(+)/{r(~)p] [ B ( O ) + B ( ~ ~ ,  

1 where 230) = /" 1' hf( 1 - h ) f  A(O)(ht) d h  dt, 

B3) = 6 r  1' hf( 1 -A)* Ac3)(ht) d h d t ,  

t=o A = O  

t=o  A=O 

(5.13) 

(5.14) 

A@) and -413) being defined by (5.9). 
Now, the first integral B(O) can be evaluated analytically as follows. Noting that 

(5.15) A(o)(~)  = 2/(2$,)3 = 2yo(dx/dt) = 2 ( d ~ / d t )  (say) 

and changing the order of integration in B@), we have 

B(O) = 2 1 ,  A+( 1 - A)-# F(ht,) d h ,  

where ~ ( t )  = ~ ~ ( ' ) y o ( z )  dx = Jrsinrdx = 1 - cosx. 

Changing next the variable of integration in the integral of (5.16) to 1 - h gives 

(5.16) 
0 

B@) = 2 I :h-s( l -h)-sF[( l -n) t , ldh,  
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which, taken together with that integral, results in the symmetric integral 

B(O) = s,’ ( 1  - A)-# h-*[F{ht,} + F{( 1 - A )  t,}] dh. 

In  addition, from the definition of F(t)  in (5.15) and the definitions oft and t, in 
(5.4), i t  follows that 

P{(l-h)t,)+F{At,) = 2 for 0 < h < 1, (5.17) 

so that the preceding integral can be expressed simply as 

(5.18) 

on using the well-known expression for the beta function. 

procedure. Noting that, by (5.15) 
The second integral B3) of (5.14) can also be simplified by a somewhat similar 

we have, because of the definition of A(3) in (5.9) and because of (5.15), 

I d  dF 
.4(3)(t) = -- t-+5- = _ _ _  t-+4F 

6 ’ [  d2F dtz dt 6 d t [  dt 1’ 
which, with (5.15), gives readily 

10 1 B(3) = - - h-#( 1 - h)fF(ht,) d h  - - [h-#( 1 - A ) )  + A#( 1 - 4 - 3 1  $’(At,) dh .  
3 L 

Now, the second integral here can be written in the symmetric form 

is,’ [h-*( 1 - A)* +A+( 1 - A)-+] [F{ht,} + F{( 1 - A )  t,}] d h  

the equalities following, as with (4.18), from the application of (5.17). Thus, we 
obtain finally for the integral B3) of (5.14) 

(5.19) 

where the definite integral was found to equal 1.185 upon numerical integration. 
Therefore, by (5.18) and (5.19), 

c, = + - ~ + y i m )  r(g)/[r(+)y = 0.461, 

which, together with (5.12) and (5.13), gives the desired asymptotic relation for 
the average Nusselt number: 

Nu = (Pe)* [Om6245 + 0*461(Pe)-) + O(Re) +o(Pe-*)I (5.20) 

for P e  + co, Re -+ 0. In  closing, we recall that in this relation both Nuand Pe are 
based on the radius of the sphere. 
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Appendix 1. Derivation of the integrals for the first correction term to 
heat transfer 

By substituting the expression of (4.9) for the Green's function Go into the 
integrand of the integral h'z) of (4.16), and after changing the variables of inte- 
gration, we obtain 

(A 1.1) 

and 

5 and T being the variables defined by (4.9) in terms oft, z, and t*. To simplify the 
integral P which appears here, we make use of the relation (Erdelyi, Magnus, 
Oberhettinger & Tricomi 1954, vol. 2) 

(valid when the real parts of $, v +p, and Y + 1 are positive) wherel$'; denotes the 
confluenct hypergeometric function (Erdelyi et al. 1954, vol. 3). Furthermore, on 
account of the transformation rule 

equations (A 1.1)-(A 1.3) give for h'z) 

after a change of the variable of integration from T' to h = +/r .  
Recalling by (4.9) that c 2 z  zlZ+l, one arrives finally at 

x A@)(Ar,t*)dh for n > - 1. (A 1.5) 
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Although we shall not establish rigorously all the criteria for validity of this 
formal result, we note that two requirements for convergence of the integral in 
(A 1.5) are the integrability of tll(n+l?l/@)(t, t*), regarded as a function oft over the 
interval 0 < t < t,, and the condition that ( p  - n)/(n + 1) > - 1 which reduces to 
p > - 1 since we are considering here only the case n > 0. 

Appendix 2. Singular behaviour of the asymptotic expansion for the 
sphere 

We wish here to indicate briefly the singular nature of the expansion for the 
local rate of heat transfer, derived in the last section of the paper, for the case of 
the isothermal sphere. To begin with, one can see from equations (5.7) and (5.10) 
that the fist correction term to the asymptotic value of the local Nusselt number 

(A 2.1) 

Fl(t) = A+( 1 -A)-% A@)(&) dh, (A 2.2) so’ 
s,’ 

where 

F2(t) = 6 A*( 1 -A)+ Ac3)(ht) dh, 

with A(O) and A(3) given by (5.3) and (5.9) as 

A(O)(t) = 2 ,/$/sinx, 

(A 2.3) 

the functional relationship between x and t being that of (5.4). 
It is immediately evident from the above expressions that Fl and F2 are both 

well behaved for all values of t with the exception of t = 0 and t = t ,  = Q ,/&r 
which correspond, respectively, to the front and the rear stagnation points of the 
sphere. The singularity at t = 0 offers no real difficulties for, although it is true 
that both Fl and F, become O(t-4) at t + 0, the same also holds for (a@,/az),=, on 
account of (5.8). Besides, as was remarked earlier following equation (5.9), our 
solution remains well behaved as t (or x) -+ 0. In  contrast, it will be shown 
presently that Fl and F2 both possess logarithmic singularities at the rear stagna- 
tion point of the sphere, thus indicating a breakdown, as t + t,, of the regular 
perturbation expansion since (a@,jaz),=, remains O( I). 

Considering fbst the integral Fl(t) of (A 2.2)’ one can see from (A 2.3) and (5.3) 
that the function A(O) in the integrand behaves like 

A‘O’(t) = [2 &(n - x)] [ 1 + O((n  - x)”] 
= [ 2 / 3 ~ ( t , - t ) * ] [ l + O { ( t , - t ) * } ]  for x + n ,  t +t,. 

Now, the first integral of (A 2.2) can be expressed as 

A*( 1 - A)-) ( t ,  - At)-* dh 

+ 1: hf ( 1 - A)-* [A(O)( At) - (2/36) (t, - At)-*] dh.. . , (A 2.4) 

19 Fluid Mech. 23 
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from which it follows that, as t -+ t,, the second integral here remains bounded, 
whereas the first integral has a singularity at the upper limit, h = 1. In  fact, one 
can show readily that 

hf ( 1 - h)-3 (t ,  - th)-) d h  = t; f log [ l/(t, - t)] + O( 1) 

= t,-,log[l/(n-x)]+O(l), for x -+ n,t --f twh, 

so that the behaviour near x = n of the function 2il(t) of ( A  2.1) is given by 

Fl(t) = ( 2 t ~ f / 3 + ) l O g [ l / ( t , - t ) ] + O ( l )  

= (2~/(3n)~)log[l/(n-x)]+0(1) for x+n,t+t,. (A2.5) 

In  a similar manner one can demonstrate that the function Fz(t) of (A 2.1) has 
the limiting form 

Fz(t) = - ( f f / 2 * 3 f ) l o g [ l / ( t , - t ) ] + O ( l )  

= -(1/6nf)log[l/(n-x)]+0(1) for x + n ,  t-tt,. (A2.6) 

Thus, because of (A2.1), (A 2.5) and (A 2.6), 

r($) 2 z 2‘ f -rS] =---( ) (;) (6f-l)log[I/(n-x)]+0(1) ... (A2.7) 
z=o [r(5)Iz 3 

for x --f n. 
We can see then that, since (a@,/az),,, is O(1) as x -t n, the asymptotic 

expansion (5.7) is not uniformly valid for 0 < x < n, due to the singularity at 
x = n. This singularity is clearly attributable to the omission, in going from (3.2) 
to (3.7), of the term a2/ax2 from the differential operator P which results in the 
boundary-layer solution not being valid near x = n where this derivative 
becomes important in describing the coalescence of the thermal boundary 
layers into a thermal wake behind the sphere. 

Now, by investigating the limiting form of the differential operator of (3.2) 
near x = n, one can show that in order to retain the x-derivative in question one 
should employ as appropriate stretched co-ordinates for the boundary-layer 
analysis (Pe),y, as before, and (Pe)& (n-x), in which case the ‘singular’ region 
at the rear stagnation point will extend over a neighbourhood, (n - x) = O(Pe-)), 
of x = n. Therefore, by inspection of the integral (5.11) for the average Nusselt 
number, one can conclude that the contribution of the singular region to the total 
rate of heat transfer should be of an order smaller than O(Pe-3) relative to the 
asymptotic value for Pe --f 00, and that the expansion of (5.12) should be correct 
to terms O(Pe-f), which is as indicated. 
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